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A three-dimensional, incompressible, multiphase particle-in-cell method is pre-
sented for dense particle flows. The numerical technique solves the governing equa-
tions of the fluid phase using a continuum model and those of the particle phase using
a Lagrangian model. Difficulties associated with calculating interparticle interactions
for dense particle flows with volume fractions above 5% have been eliminated by
mapping particle properties to an Eulerian grid and then mapping back computed
stress tensors to particle positions. A subgrid particle, normal stress model for dis-
crete particles which is robust and eliminates the need for an implicit calculation of
the particle normal stress on the grid is presented. Interpolation operators and their
properties are defined which provide compact support, are conservative, and provide
fast solution for a large particle population. The solution scheme allows for distribu-
tions of types, sizes, and density of particles, with no numerical diffusion from the
Lagrangian particle calculations. Particles are implicitly coupled to the fluid phase,
and the fluid momentum and pressure equations are implicitly solved, which gives a
robust solution. @ 2001 Academic Press

Key Wordstwo-phase flow; Eulerian—Lagrangian flow; particle flow; multiphase
particle-in-cell (MP-PIC); three-dimensional finite volume; Rayleigh-Taylor insta-
bility.

I. INTRODUCTION

Mathematical models of separated particulate multiphase flow have used either a col
uum approach for all phases [1, 2] or a continuum for the fluid and a Lagrangian model
particles [3]. The continuum—continuum model readily allows modeling of particle—partic
stresses in dense particle flows using spatial gradients of particle volume fractions [2
However, modeling a distribution of types and sizes of particles complicates the con
uum formulation because separate continuity and momentum equations must be solve
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each size and type [4, 5]. Using a continuum model for the fluid phase and a Lagranc
model for the particle phase allows economical solution for flows with a wide range

particle types, sizes, shapes, and velocities [4, 6]. However, the collision frequency is f
for volume fractions above 5% and cannot be realistically resolved by current Lagrang
collision calculations [6].

Particle-in-cell (PIC) methods have been used since the 1960s [7]. Fluids are represe
by discrete mass points. The differential conservation equations of mass, momentum,
energy govern the flow, although the conservation of mass is satisfied by the summatio
mass points in a computational cell. Nontransport terms are calculated from the differer
equations, and the transport terms are calculated from mass points moving by a velc
weighting procedure. The initial motivation for PIC methods was probably the accura
in following interfaces. However, the calculation of convection is very accurate because
the Lagrangian nature of the PIC methods, and PIC methods offer the promise of sub
resolution of those properties which are not updated on the grid. O’Rourke and Amst
[8] presented particle-in-cell models applied to chemically reacting flow. Particle properti
were interpolated to the grid, and the flow field and particle interactions were calcula
on the grid at the advanced time step. Properties were then interpolated back to parti
The calculation of particle interactions on the grid increased computational efficiency w
no significant increase in numerical error. Andrews and O’Rourke [9] extended the F
scheme to a multiphase particle-in-cell (MP-PIC) method for one-dimensional Euleria
Lagrangian flow. In the method, particles are treated both as particles and as a contint
The particle stress gradient, which is difficult to calculate for each particle in dense flc
is calculated as a gradient on the grid and is then interpolated to discrete particles. Sr
et al.[10] extended the method to be two-dimensional, with an improved grid-to-partic
interpolation method.

This paper retains the basic concept of treating particles both as a continuum ant
discrete particles. Particle properties which are best calculated on the grid are calcul
on the grid, and other particle properties are calculated at discrete particle locations.
paper defines interpolation operators and their properties which are well suited to thi
dimensional calculations. The operators are fast and are shown to be locally and glob
conservative. A model for the particle normal stress force on discrete particles is preser
The solution algorithm uses a split operator on the particle momentum calculation an
subgrid particle, normal stress applied to discrete particles. The solution method elimin:
the need for a costly implicit solution of the particle normal stress on the grid. Further, t
particle and fluid phases are implicitly coupled which provides a robust solution.

Il. GOVERNING EQUATIONS

A. Continuum Phase

The continuity equation for the fluid with no interphase mass transfer is

00
8—;+V-(9fuf)=0, (1)

whereu; is the fluid velocity and: is the fluid volume fraction.
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The momentum equation for the fluid is

d(frur)
at

1 1
+ V. (frufus) = ——Vp— —F +6¢0, (2
Pf Pf

wherep; is fluid density,p is fluid pressure, and is the gravitational acceleratioF.is
the rate of momentum exchange per volume between the fluid and particle phases.
fluid phase is incompressible and fluid and particle phases are isothermal. The momer
equation presented here neglects viscous molecular diffusion in the fluid but retains
viscous drag between patrticles and fluid through the interphase dragFofdeglecting
the laminar fluid viscous terms generally has negligible effect on dense particle flow,
laminar terms can be easily included in the fluid equation set. For the more interesi
turbulent flow, there are currently no suitable models for dense particle flow. Large den:
and size particles act as large eddies of momentum transfer while gas flow around c
pack particles produces small subgrid eddies and dissipation. Further, momentum trar
at walls is complicated by particles covering walls with particle sizes on the same orde
larger than the viscous sublayer. This paper does not address turbulent dense particle
However, the discrete particle to fluid momentum transfer (which is a turbulent clost
model for subgrid momentum transfer between particles and fluid) generally produces
Reynolds numbers (based on particle diameter) and provides an excellent predictio
dense particle flows over a wide range of gas flow.

B. Particulate Phase

The dynamics of the particle phase is described using the particle probability distribut
functiong (x, up, pp, 2p, 1), wherex is the particle positiony,, is the particle velocityp,
is the particle density, an@,, is the particle volume. For the present it is assumed that th
mass of each particle is constant in time (no mass transfer between particles or to the fl
but particles may have a range of sizes and densities. The time evolutjois @btained
by solving a Liouville equation for the particle distribution function [11],

d¢
s + V- (pup) + Vy, - (#A) =0, ()
whereV, is the divergence operator with respect to velocity. The discrete particle accel

ation is [9]

1 1
A =Dp(us —Up) — —Vp+9g—- —Vr. 4)
Pp Oppp

The terms represent acceleration due to aerodynamic drag, pressure gradient, gravity
gradient in the interparticle stress,

The probability function integrated over velocity and mass gives the probable numl
of particles per unit volume atandt in the interval(u,, up 4 duy), (pp, pp + dpp), and
(£2p, Qp 4+ dQ2p). The particle volume fraction is defined from the particle distributior

function as



526 D. M. SNIDER

The interphase momentum transfer function per volume in the Eulerian momentum ec
tion is

1
p

The Eulerian governing equations for the particle phase may be obtained by taking
moments of Eq. (3). By multiplying Eq. (3) by, and pp2pu, and integrating over
particle density, volume, and velocity coordinates, the particle conservation equations
obtained. The particle continuity equation is

9@app)

and the particle momentum equation is

3@ ,0 up,)

///¢’Qppp p(Ug — Up) dS2p dop dup
-V. [///qﬁﬂppp(up—Up)(up—ﬁp)dﬂpdppdup , (8)

where the mean particle velocity, is given by

= // ¢Qpppup d2, dpp duy, 9)
pPp

and the average particle density is given by

Gpppz///(bﬂppdepdppdup. (20)

The sum of volume fractions of fluid and particle phases must equal dpity,6s = 1.

IIl. INTERPOLATION OPERATORS

A. Interpolation Operators

Particle properties are interpolated to and from the Eulerian grid in the MP-PIC scher
Interpolation operator properties are defined which are both locally and globally conser
tive in mapping to and from the grid. This study uses a staggered grid where moment
properties are calculated at cell faces and scalar properties are calculated at cell cer
Both scalar and momentum particle properties are needed. The continuity equation
pressure equation are calculated at cell centers. The momentum transfer between par
and gas is calculated at cell surfaces. This requires four sets of interpolation operatol
three dimensions. Scalar properties, at cell centers, are mapped with one set of interpol
functions. Momentum properties, at face centers, are mapped with three other sets.
operators have the same definition but have different support in the axis of interpolatiot
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This study uses linear interpolation operators, but the scheme is applicable to o
interpolation operators. The three-dimensional, trilinear interpolation operators are forr
from the product of directional operators in thegy, andz directions,

S= SIS (11)

If a nonorthogonal grid is used, control volumes and particles are transformed to a sqt
computational grid. The interpolation operators and gradients are calculated and then ti
formed back to the grid. The following discussion is for a rectangular computational gri

For a particle located ad,, wherex, = (X;, Yp, Zp), the cell centex-directional inter-
polation operators‘(xp), is an even function, independent of thandz coordinates, and
has the properties

0 X_1>Xp>X
SX(Xp) — {1 ) 1_X- p +1 (12)
p—=A
and
> Sxp =1 (13)

for all nodes,i, and in particular for nodes supportit8j(xp). Similarly, they-operator,
SJ-y(yp), is an even function, independent of thkend z coordinates, and theoperator,
Si(zp), is an even function, independent of tk@ndy coordinates. In two dimensions,
four cell center grid nodes support the interpolation to particle poskjprand in three
dimensions, eight grid nodes support the interpolation.

The face center directional interpolation operators are defined similarly to cell cen
operators. The-face, directional interpolation operator has the properties

0 Xi—12=Xp=Xi3p2
* Xp) = 14
S1/200) { 1 Xp=Xt12 a4
and
> S =1 (15)
£

for all face nodesé, and in particular for nodes supportir®j(xp). Similarly, they-face
andz-face operators are defined.

Thex, y, andzcell center directional operators for partiglat locatiornx, are abbreviated
S SJ «»ands;, . Thex, y, andzcell face directional operators are abbrewafﬁégl,{, /2.0
andS;, .. The interpolation operators to partiaeat locationx,, are:

Cell center interpolation operator:§ j k. = §, S{K 33,,(

x-face interpolation operator: S2jke = 51X/2K e Sx
y-face interpolation operator: S i2ke = %S 1/2 KS< B
z-face interpolation operator: S.ikze =SS 1 KS</2K

The interpolation operatchatisfiesZESE(xp) = 1 for the support nodes
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The cell centenx-linear interpolation operator at, on the computational grid is

x  Xi+1— Xp
= —, 16
S Xit1 — Xi (16)

Similarly, the S’ and S operators are defined. The face cell directional interpolation oy
erators are defined in the same way as the cell center interpolation operators, except L
face nodes.

The cell volume fraction at grid,(j, k) is

1
Opjx = o Z Npe$2p, S j ks (17)
Lk k=1

where the summation is over all particlgs, is a particle volumen, is the number of
particles in a parcel (a cloud of particles all with the same propertigsjs the number of
parcels or clouds, and the grid cell volumegs; .

B. Product of Interpolation Operators

The numerical scheme implicitly couples particles within the continuum fluid momentu
equation, which leads to the product of interpolation operators such as

8 8
SXp) D> SXpQ: =) SXp)S(Xp) Qs (18)
3 &

where the grid propert§) was mapped to a particle location and then back from particles
the grid. The expansion of Eq. (18) produces eight products of interpolation operators
results in a 27-point stencil for tt@@property, in two dimensions. The resulting large stencil
in three dimensions is computationally and computer memory expensive. The proper
of product of interpolation operators are defined here which give compact support for
mapping. The interpolation operator properties are less diffusive than direct expansiol
Eg. (18), and the operators are shown, in Appendix A, to be conservative.
The product of interpolation operators is defined as

S (xp,) ifE=¢andi=«

X Xp) = 19
S (0. % 090 {o if £ £ ¢ or e # «, (19)
where¢ andé are grid nodes andandk are particle location indices.
C. Gradient of Interpolated Properties
A grid property,Q, mapped to particle locatioxy, is
N
Qp =) SXpQ:. (20)

=1
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whereN is the grid nodes in support of the interpolation oper&orThe gradient of the
particle property is

N N
VQp=> VS (Xp)Q: + > SXp)(VQ). (21)
£=1 §=1

Attimet, the particle position and grid are fixed, and the first term is zero. The interpolati
of the gradient to the particle position becomes

N
VQp=>_ SXp)(VQ. (22)
£=1
D. Product of Interpolation Operator and Gradient of Interpolation Operator

The product of interpolation operator and the gradient of the interpolation operator is

8 8
VS (Xp) - Y SXp)VQe =Y VS (Xp) - [S(Xp)VQe], (23)
£=1 £=1

where the grid property Q was mapped to a particle location and then back from particle
to the grid. The product of the interpolation operator and gradient of the interpolati
operator is

8S, 2S,, 5
SSVE =T8S S s sect rsS et

&

Se 58|, (24)

where the unit vector is = (&, ey, &,).

The definition of the product of interpolation operators requigeS. = S if ¢ = ¢,
else 0. Because an interpolation operator is formed from directional operators which
functions of only one independent direction, then for the product rule Eg. (19) to be tr
the product of directional operators must also follow the product rule. That is,

K (xp) if&=¢andi=x
X ) = 25
Sf(XpK)SE(XP) {O ifEAcori#« (25)

for the x-directional operator, and similarly for the andz-directional operators.
The product of interpolation operator and gradient of interpolation operator then redu
to

LS
w * oy

8
VS(Xp) - > S(Xp)VQs = 5|2

£=1

a .| -VQ..  (26)

For a linear interpolation, the derivative of the directional interpolation operator is a top-|
function.
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IV. NUMERICAL SOLUTION

The governing equations for fluid and particles are solved on the computer. A compt
tional particle method is used to solve for the particle distribution rather than direct soluti
of the Liouville equation. Particle properties are interpolated to and from the grid usi
the interpolation operators. The incompressible, three-dimensional continuum equati
are solved using a finite volume method. The numerical method implicitly couples pha
through the interphase momentum transfer. New time values are supenseripaind old
time values are superscript

The conservation equations are approximated by finite volumes with staggered sc
and momentum nodes. The basic numerical scheme presented was also implemente
a collocated grid where both momentum and scalar variables are defined at a cell ce
An advantage in using the collocated scheme is the use of only cell center interpolat
operators for mapping particle properties to and from the grid. In the initial development, 1
collocated grid solution was not as robust as the natural staggered grid, and the colloc
solution method was set aside.

A. Particle Equations Finite Difference Approximation

Particles are grouped into computational parcels (clouds) each containiparticles
with identical mass density,,, volume,2,, and velocity,u,, located at positior,. The
Liouville Eq. (3) is the mathematical expression of conservation of particle numbers
volumes moving along dynamic trajectories in particle phase space. Thus the numbe
particlesn,, associated with a parcel is constantin time. Because there is no mass exch:
between particles, a particle’'s mass,, is also constant. Parcel positions are updated by

Xptt =X + Atupt 27)

and the particle velocity is updated from integration of Eq. (4).

1 1
ul + At [Dputtt — = vphtt — —— vt 4 g

P
o ppt
un+1 — p p¥p ; 28
P 1+ At Dp (28)
whereu?fpl is the interpolated implicit fluid velocity at the particle Iocati(’.ﬁ‘lp"‘;rl is the

interpolated implicit pressure gradient at the particle Iocat%’qr,‘+1 is the interpolated
particle stress gradient at the particle locatigis gravity acceleration, anD,, is the drag
coefficient.

B. Interphase Drag Model

The interphase drag model used here is [4]
e (29)
where

24
——0;2%5(1+ 0.5R%8") Re < 1000
Re (30)

Cy = 0.440; 2% Re> 100Q

Cy =
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The Reynolds number is defined as

2 — Uplr
Re— 2P1IUt —Upll (31)
s

wherey; is the gas viscosity and the particle radius is

1/3
r= <3fnp> . (32)

C. Particle Normal Stress Model

The particle velocity given by Eq. (28) can be solved directly at each time step using fl
properties updated from the current time step (new-time fluid velocities and pressure fie
and old-time properties for the particle normal stress tensor. However, because the pal
normal stress is highly nonlinear, simply using old-time values for the particle normal str
and applying the gradient to particles in a cell does not work when particles are near cl
pack. Over a finite time interval, particles not unduly restricted by the old-time partic
normal stress can enter a control volume (or within its interpolation range) and push
particle volume fraction to close pack. This, in turn, gives a very large particle norm
stress which forces all particles out of the cell. One solution is to reduce the calculat
time step or use subtime intervals for the particle momentum equation solution and volt
fraction. Then the particle stress builds over each time step as particles approach the «
pack volume fraction, and the particles stop before close pack occurs. If the particle
significant momentum, the time step needed may be very small, and in any case the me
is computationally expensive. Another approach used by Seiddr[10] was an implicit
scheme for calculating the volume fraction (particle normal stress) on the Eulerian ¢
and then applying the implicit new-time, particle normal stress gradient to particles. T
implicit scheme worked well for a wide range of flow conditions [12].

There are drawbacks to the implicit calculation of the particle volume fraction meth
used by Snideet al. [10]. The Eulerian implicit calculation of volume fraction is used
solely to calculate the particle normal stress and is discarded at the end of a calcule
step. The final volume fraction is calculated from mapping particle volumes to the grid. T
implicit volume fraction equations are derived from a Taylor series expansion of Eq. (1
which includes the particle velocities, which in turn, includes the volume fraction throu
the nonlinear particle normal stress. The nonlinear volume fraction equations are sol
by linearizing the particle normal stress and then iteratively solving the resulting line
equations, updating the linearized coefficients each iteration step [15]. The highly nonlir
volume fraction equations are difficult to solve and can be computationally expensive.

A second problem with the implicit calculation of the volume fraction is accuracy. Tt
constant coefficients in the linearized volume fraction equations contain gradients of
particle interpolation operators. The problem arises because the interpolation gradien
discrete particles changes sign as particles move from one interpolation support to anc
The fixed interpolation gradients in the Eulerian volume fraction coefficients do not refle
the change of gradients as particles move. The implicit solution can predict a nonphysi
negative volume fraction. The implicit calculation of volume fraction conserves volum
even if the local volume fraction is negative, and a false decrease in volume fraction at
node has an associated false increase in volume fraction at its neighbor node. Limiting
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minimum value of the Eulerian calculated volume fraction to zero does not pose a probl
in the solution scheme. A small volume fraction results in a trivial particle normal stress
the particle velocity calculation. On the other hand, a small error in volume fraction ne
close pack can give a very large particle normal stress and catastrophic results.

A new particle stress model is presented here. The particle normal stress is modele
a continuum calculation of the particle pressure and the subsequent normal stress f
is applied to discrete particles. The new Lagrangian discrete particle stress model wi
uses the stress gradient, eliminates the need for an implicit solution for the particle nori
stress (particle volume fraction). The model is robust and fast which makes it well suif
for three-dimensional calculations. Calculations using the new particle normal stress mc
compare well with experimental data.

Collisions between particles, where particles are modeled as a continuum, are estim
by an isotropic interparticle stress where the off-diagonal elements of the stress tensol
neglected. The continuum particle stress model used in this study is an extension of
model from Harris and Crighton [13]

Pseg
T = .
maxBep — Op, (1 — 6p)]

(33)

The constanPs has units of pressure, afgp is the particle volume fraction at close packing.
For the constang, Auzeraiset al.[14] recommend % B8 < 5. The original expression by
Harris and Crighton was modified to remove the singularity at close pack by addiag th
expression in the denominator. Thés a small number on the order of 10 The particle
stress is unaffected by the modification except when the volume fraction approache
exceeds close pack. The close pack limit is somewhat arbitrary and depends on the
shape, and ordering of the particles. Therefore allowing the particle volume fraction to re
or slightly exceed close pack is physically possible considering that shifting or rearrang
of granular materials may occur.

The particle stress Eq. (33) depends only on the concentration of particles and negl
the size and velocity of particles. A more complex, continuum particle normal stress mo
based on dense phase kinetic gas theory has been developed [15-17]. The model giv
Lunetal.[16]is

T = [0ppp+ 050p(1+7)Q] O, (34)

wherey is a restitution coefficient, and, is an average particle density. The granular
temperature@ is given by

(Cc?), (35)

whereC is the instantaneous minus hydrodynamic velocity of the particle averaged o
the velocity space. The radial distribution function is

- [1— (:;)1/3] - (36)
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FIG. 1. lllustration of particles in a close pack volume.

The simple model, given by Eg. (33), contains the most important aspect of the kine
theory model which is the dependency of normal stress on the particle concentration (par
volume fraction).

The Lagrangian or discrete particle solution allows subgrid modeling of the force.
model for the particle normal stress gradient applied to discrete particles is presented.
continuum particle pressure gradient from Eq. (33) gives the force on particles due
motion and inelastic collision of particles. The pressure gradient is assumed to be apf
to particles in three general physical states near close pack. The three particles are s
in Fig. 1. For the initial discussion the mean velocity of particles (particles moving with
a moving frame of reference) is zero but is later included in the model.

Consider the particle (cloud shown near the wall in Fig. 1. The particle is surroundec
by neighbor particles or a wall and has zero mean velocity. For a large particle normal st
gradient, the resulting particle velocity and distance traveled based on only the part
normal stress may be unrealistically high. In the packed bed, the particle movemer
limited to the particle collision mean free path and stress transfer to the wall. The effec
the large particle normal stress on particles deep within the packed bed is to slightly exg
the bed.

Consider particle (cloudB, shown in Fig. 1, which rapidly approaches a close pac
cell. The particle may be traveling through a low particle volume fraction region where t
mean free path between particles is large, and its movement is not unduly restricted.
particle also may be within a stream of densely packed particles (particles moving withi
moving frame of reference) and moving at the stream velocity. As the particle approac
the packed cell, the large particle normal stress from the close pack bed begins to reduc
particle’s velocity. As the particle reaches the close packed region, the large particle nor
stress stops the particle from penetrating into the cell and moves it away from the volt
center. The physical process is collision with other particles and an elastic restitution.

Consider a particle leaving a near close pack bed, as shown by périitieig. 1. The
particle may have been forced from the bed by the particle normal stress or by other for
The collision between particles diminishes as the particle moves away from the close
volume, and the particle normal stress decreases. The particle mean free path increase
the particle has less restriction from collision with neighbor particles.
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A computational algorithm is developed to model the proposed particle behavior ¢
scribed above. The particle velocity calculation is split into two parts, where the veloc
is the sum of the particle velocity from the particle normal stress, and the velocity from
other forces. For a discrete patrticle

uptt = p + Up:. (37)

The numerically integrated particle velocity without the particle normal stress force is

At
1 +1
uf + AtDput — —Vpi™ + Atg

¥ p
Uy = . 38
P 1+ AtDp (38)

The estimated discrete particle velocity from the continuum particle normal stress grad
is

AtV

SUpy = ———— P
P ppOp(l+ AtDp)

(39)

An intermediate particle volume fraction calculation could be made at the end of t
first-step velocity calculation, using the particle velocity from Eq. (38), which include
all forces on the particle except the particle normal stress. Intermediate particle locati
could be calculated, and the particle volume interpolated to the grid giving an intermedi
particle volume fraction, which, in turn, can be used to estimate the new-time continut
particle normal stress. The intermediate particle normal stress gradient would then be
in the second-step velocity calculation using Eq. (39). The calculation of an intermedi
volume fraction is the same process as that at the end of the time step to get the r
time volume fraction. Because particles are numerically contained within the grid whi
is a ray tracing process, the intermediate calculation of volume fraction from interpolati
particle volume to the grid would add a computationally expensive step for complex thr
dimensional geometries. An alternative intermediate estimate of the volume fraction co
be calculated on the grid using the Taylor series expansion of Eq. (17) as describec
Snideret al. [12]. While this approach has merit, the extra computational time was four
not to be warranted, and this intermediate particle stress calculation is not included in:
model.

The particle normal stress, as given by Eq. [33], is only important near close pack ¢
has little effect elsewhere. As an example of the magnitude of the particle normal stre
consider dense particle flow of sane,(= 2500 kg/nf) at 92% close pack. For a close
pack volume fraction of, = 0.6 and a steep volume fraction gradient from 0 to 0.55, the
particle acceleration from particle normal stress is 0.048 ogigPs = 10 Pa angd = 3
in Eqg. [33]. Using gravity as a reference, the particle normal stress is small. As the parti
volume fraction approaches close pack, the particle stress becomes extremely large.
continuum particle normal stress gradient applied to discrete particles is limited by 1
parcel velocity relative to mean flow velocity in the orthogonal directigns: (e, ey, €,).
The new time velocity is

Vi <0

br, = MiN(& - SUpe, (1+ YIUp —{ip) - &) (40)

Upr, = max(u/pTK ,0)

u
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V>0
U, = maxe - 8upe. (1+y)(Up — Tip) - &) (41)

Upr, = min (U}, ,0),

pTK ’

where the particle velocity is,, = (up,, Up,, Up,), v is an elastic restitution factor, and the
mean particle velocity),, is the base or mean free flow of the particles where particles a
moving within a moving frame of reference. The choice of variables in Egs. (40) and (4
is to integrate the forces on the particle and to work with velocities.

The described particle normal stress model for discrete particles is designed for
computational speed while having a physical basis for applying the particle normal str
gradient. The model, given by Egs. (40) and (41), is applied to the three particles show
Fig. 1. The particle normal stress gradient for the packed bed is large and negative, w
gives a large positive velocity from the particle normal stress alone (Eq. (39)).

Particle A, at the bottom of the stagnant bed, has a gravity force and possible flt
drag giving a negative velocity. The resulting particle normal stress velocity from Eq. (4
matches the velocity from gravity and fluid drag from Eq. (38). The resulting combing
velocity from Eq. (40) is zero or a small positive velocity from elastic restitution. Th
particle may move slightly in the direction of the particle normal stress force, but, for tl
most part, the particle remains stationary (relative to the particle base flow).

ParticleB rapidly approaches the packed bed. Away from the packed bed, the parti
velocity from Eq. (38) is greater than the velocity from the particle normal stress a
the particle will slow from the particle normal stress, but the particle will continue t
move toward the packed region. As the particle moves closer to the packed bed, the pa
velocity is less than the velocity resulting from a large particle normal stress, and the part
is stopped and bounces back depending on the elastic restitution factor.

ParticleC is moving away from the packed region and is at the fringe of the packed b
where the volume fraction is low. The resulting normal stress particle velocity from E
(40) is zero, and the particteé velocity is not restricted by the particle normal stress and it
velocity is given by Eq. (38).

The model needs one additional property which is the combination of properties
particlesA andC. The particle is moving in the direction of the particle pressure force bt
is within the packed bed. The particle motion will be limited by particle collisions. Th
model limits the motion of particles in close pack region to a collision mean free path.
mean free path is defined as

¢ = fi, (42)

wherer, is an effective particle radius. The formula for the mean free path given |
Gidaspow [4],

¢=—=2" (43)

provides guidance in defining.

The particle normal stress model given in this paper gives a natural limiting of the parti
volume fraction to close pack. There are no other restrictions to force particles to less t
close pack besides those applied in the particle stress model. The particle normal s
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gradient as given in the particle momentum Eq. (4) is conservative [9]. The particle str
model described in this paper conserves the interpolation of the particle stress grac
to and from the grid except in the narrow volume fraction region at close pack. This la
of conservation of interpolating the stress gradient to and from the grid at close p:
is inconsequential for a number of reasons. First, numerically, the grid particle norn
stress is not used in an Eulerian solved conservation equation. If the gradient is neede
an Eulerian conservation calculation, the particle stress mapped to the grid will give |
consistent particle normal stress gradient. Secondly, because the grid particle normal s
models (either the simple model Eq. (33) or the more complex model based on kine
theory of gases [15]) has such an extreme nonlinear variation in force with only a sn
change in volume fraction at close pack, the adjustmentin particle stress gradient for disc
particles gives very close to the same calculated volume fraction from either the particle
the Eulerian solution (both give a calculated volume fraction near close pack).

V. EULERIAN NUMERICAL APPROXIMATIONS

The Eulerian momentum equations and pressure equation (which is derived from volt
continuity) are approximated by finite volumes with staggered scalar and momentum not
The conservation of volume is calculated in a Lagrangian frame of reference. The fir
volume equations are developed in Cartesian coordinates for an orthogonal grid. The
merical representation gives linear algebraic equations with explicit coefficients multipli
times the velocity and pressure. The coefficients are built up by adding the contribut
from each part of the numerical approximation.

A. Continuity and Pressure Equation

Conservation of volume is calculated explicitly in the Lagrangian frame of referenc
After grid momentum equations are solved, which implicitly couple the particles and flui
grid properties are interpolated back to particle (parcel) positions and used in a final exp
calculation of parcel velocities. Unlike most single fluid PIC methods, in the MP-PI
method, particles move with their own velocity rather than a velocity interpolated from tl
grid. Following the particle velocity calculation, the particle positions are updated. The n
volume fraction is calculated by interpolating particle volumes to the grid using Eq. (1°
The new-time fluid volume fraction is calculated from the conservation of volume relatic
0r = 1—6p.

For incompressible flow the Eulerian continuity equation reduces to conservation
volume. A pressure field is constructed which guarantees satisfaction of the fluid ¢
tinuity equation. The pressure equation is formed from combination of the fluid con
nuity equation and fluid momentum equation. Unlike single-phase incompressible flc
the divergence of individual phase velocities (continuity equation) is not zero but is b
anced by the time rate of change of the phase volume. For an Eulerian solution of
phases, the phases can be added to eliminate the time rate of change of volume. I
Eulerian—Lagrangian solution, a pressure field is calculated which maintains fluid ph
continuity. The time rate of change of fluid volume, in the continuity equation, is the ne
ative of the rate of change of the particle volume interpolated to the grid. A pressu
correction scheme similar to SIMPLE is used to adjust the pressure and fluid vels
ity fields which satisfy continuity. The pressure correction method follows those f
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single phase flow, and details of pressure-correction algorithms are given by Ferziger
Peric’ [18].

B. Momentum

The finite volume approximation to themomentum Eg. (2) for staggered noglean
be written as

n

Ut =Y cuitt +> a8, Pt + Qe (ROt + CL, (44)
n n

where the summations, are over neighbor nodek, is the interphase momentum transfer,
Q is the volume, an@’ is a constant “source.” The explicit constant coefficieraada are
from the numerical approximation to the momentum equation using numeric methods s
as given by Ferziger and Peric’ [18] or Andersairal.[19]. In this study, the time derivative
is approximated by a backward difference, and the convective term is a blended cer
difference and upwind approximation. For a momentum cell, the convective contributi
from the right neighbor to the constant coefficient is

pr@tue)f A ifuf >0
{ (45)

G=q+
ifuf <0,

wherec;, on the right side of Eq. (45), represents the building of a coefficient from multip
numerical steps. The momentum cell right face flgx,u;)", is the interpolated value
between the product of the velocity and volume fraction at face a@al its right neighbor
value, andA, is the right area of the momentum cell. Similar terms result for the other fiv
faces and the center momentum node. The blend of upwind and central difference resul
a blending factor multiplying terms in Eq. (45) and an explicit central difference momentt
term added to the equation source term. The left and right pressure coefficients in Eq.
are

a=~A a=-A, (46)

whereA, and A, are the momentum cell left and right faces, respectively.

C. Interphase Momentum Transfer

Up to this point, a momentum equation contains adjacent cell velocities and pressu
An implicit-coupled, interphase momentum transfer between particles and fluid contribu
to existing terms and can add new terms. The implicit interphase momentum transfe
momentum nodg is

N
1 - 1
1 1 1 1
Fg+ = _Qg E S, {DPK(U?,’},K — ur,‘;’ ) — _pp Vpg:“ Np, My, , 47)
k=1 .

wherem,, is the mass of a particle amg is the number of particles in a parcel. Putting the
particle velocity given by Eg. (28) into the interphase drag and putting the interphase d
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into the fluid momentum equation, the numerical approximated momentum equation is

Qz,Of(Qfo)?Jrl LEH Qcpr(OrUs)y
At G At
Mp, Np, &, Dy, Nl p Npe i n+1
J— u S S
Z (1+D, At)zsg(f) Z1+D Atppl(zss Ps

Vfg

'« )

— Q. VI + Qe (61):9

(48)

mpKnpKQKDpK n _ mpKnpKS_ AtDpK
+XK: (14 Dp, At) (U5, + Atg) Z (14 Dp At) pp

where F; is the advective terms. The summatian,is over all particles. Abbreviated
subscripts are used wheres the momentum node, agds the summation of the cell grid
nodes supporting the interpolation to a particle location.

If a top-hat interpolation is used, the fluid velocity at particle positigris either zero
or the node velocity. If a trilinear or other interpolation is used, the fluid velocity at partic
positionx, includes the node velocities in support of the interpolation. Considering on
the fluid velocity term in the gas to particle drag Eq. (47), the interphase momentum in
fluid equation is

Np N
F?+1:...+Z§_’(Dpknpkmpkz%)fuf$+...’ (49)
k=1 &=1

where the first summation is over all particlés;,, interpolating the particle momentum
to the grid. The second summation is over nodéssupporting the interpolation of the
fluid velocity to particle locations. In two dimensions with bilinear interpolation, the abov
interphase momentum introduces the upper left and right and the bottom left and ri
neighbor velocities which gives a 9-point velocity stencil. Using the interpolation produ
definition Eq. (19), the velocity term in Eq. (47) reduces to

Np
FC”H:~"+Uf;ZScKDpKnPKmPK+"', (50)

which maintains the tight support of only neighbor velocities. For a staggered grid, t
implicit interphase momentum can increase the two-dimensional pressure stencil froi
to 12. Using the interpolation product definition, Eq. (19), no additional pressure terl
are added to the stencil. Using the definition of the interpolation operator product, dou
summation terms in the momentum Eq. (48) are reduced to single summations over parti

Equation (48) can be cast into linear algebraic equations similar to Eq. (44) with n
coefficients and constants. If the fourth term on the right side of Eq. (48) was expand
additional neighbor velocities would be included in the fluid equation. However, applying t
definition for multiplied interpolation operators, only the advective térgngives neighbor
velocities which have the same coefficients as in Eq. (44). The diagonal coefficient of
fluid velocity will have an additional contribution, and the pressure coefficients will hax
additional contributions. The other terms are lumped into the constant. The equations
solved using a conjugate gradient solver [20].
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VI. TEST PROBLEMS

Four three-dimensional test problems are given. The first two problems demonst
the MP-PIC method for calculating particle flow where the particle normal stress is nc
significant force. The second two problems demonstrate the MP-PIC method for part
flow at close pack where the particle normal stress is a major force. The first problen
calculating one-dimensional settling of particles for which there is an analytical solutic
The three-dimensional calculation of one-dimensional settling of heavy particles aboy
lighter fluid requires care in initial conditions. Small perturbations in the initial interfac
will lead to three-dimensional Rayleigh—Taylor-type plumes. The second test problem
Rayleigh—Taylor problem where the interphase particle drag is high. Small perturbation
interface volume fraction grow into large structures. The growth of the three-dimensiol
buoyancy driven mixing layer is compared with measured data. The third problem is gray
sedimentation where heavy particles settle to close pack. The last test problem is the blo
of a jet of particles onto a plate. The problem is three-dimensional and nonlinear, w
particles close packing under the jet.

A. One-Dimensional Layered Sedimentation

The one-dimensional sedimentation of a dense particle—fluid mixture above a ligt
fluid is calculated. The problem considers gravity-driven particles falling through gas a
depositing at the bottom of the container. The three-dimensional solution requires
there are no initial perturbations. Small perturbations quickly grow to three-dimensiol
structures. The problem also requires a high level of convergence so that numerical
turbations do not lead to three-dimensional structures. The convergence criterion w
maximum residual less than 1% on all equation sets. Eventually numerical instabilities
will lead to three-dimensional flow in this inherently unstable problem.

Andrews and O’Rourke [9] provided an analytical solution for the one-dimension
sedimentation and only the rudimentary details are given here. A granular mixture of sir
size particles occupies 20% of the upper half of the container. Table | gives details
the problem. The interphase drag is truncated from Eq. (3@gte= 2207 to allow
an analytical solution. Using a drift flux approximation, a nonlinear differential equatic
results. Particles at the bottom of the expanding mixing layer, where the particle volu

TABLE |
One-Dimensional Sedimentation Calculation

Number of parcels 52,000
Particle radius 0.001 m
Particle density 1000 kg/m
Fluid density 1 kg/mh
Fluid viscosity 0.02 kg/ms
P, 5Pa

Ocp 0.7
Gravity -9,0,0 m/$
Number cells 5k 5x 5
Domain 1x 05x0.5m
DStokes 90 gl
Calculation time step 0.001s
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fraction is near zero, fall at near the Stoke’s free-fall velocity of 0.1 m/s. At the top of tt
mixture, which has a constant volume fraction, the expansion the particle volume fract
has the characteristic solution

VHX/t) V(0o < X < V(Bs00)t

0 =< 0_4 X < v(0_oo)t (48)
0ic0 X > v(0to0)t,
where
9 n
v = g(Df) [2+n)6, — 1]. (49)

p

The upper part of the slug will remain a step function because of the crossing of charac
istics. For Stoke’s flowm = 1, and for Stoke’s flow with the hindrance function= 3.65.

Figure 2 shows the calculated particle volume fraction at times during the transie
Particles at positio€ fall at near the Stoke’s free-fall velocity 0.1 m/s and reach the bottor
in 5 s. The numeric calculation predicts this expanding mixing layer well. At [@ihe
particle volume fraction is 0.2, and, from the characteristic, the mixture edge rises at 0.00
m/s. The numerical solution also calculates a rise in the mixture edgyebat the numeric
resolution is too low to provide a quantitative comparison with the analytic value. At the t
edge of the mixtured, the particles fall at 0.0443 s. The calculation predicts accurately
this kinematic shock. There is also calculated, high wave number harmonics on the par
volume fraction which are not in the analytic solution. Because of the dependence on part
volume fraction betweeA andB, the linear solution does not apply. Calculating a one:
dimensional, heavy-above-light fluid problem using a three-dimensional solution is diffict
Perturbations whether physical or numerical lead to instabilities. The one-dimensional
problem shows that with care and high convergence tolerances, the solution scheme
predict a stable solution for an unstable problem without perturbations (for a while). Nc
that eventually perturbations form in the calculation. The next test problem shows t
the numerical scheme can equally well calculate an unstable problem starting from sr
perturbations.

0.4 T T T T T T T T T T T T T T

---1t=0s
[ o—oOt=1s
—at=2s

©
w

Particle volume fraction
(=] =]
- N

06 07
Distance (m)

FIG. 2. One-dimensional sedimentation.
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B. Rayleigh—Taylor Problem

Rayleigh—Taylor heavy fluid, above light fluid is inherently an unstable problem. Smi;
perturbations grow and form into three-dimensional structures. There has been sub:s
tial measured data on the growth of Rayleigh—Taylor mixing layers. Following the initi
exponential instability growth period, the growth of the mixing layer is well described b

h= aAgtz,

whereh is the half width of the mixing layeg is gravity,t is time, and the Atwood number
is A = (p1 — p2)/(p1 + p2). The value of the constaatis still undergoing scrutiny, but the
wealth of measured data suggests that the consties between 0.05 to 0.07. [21-24].

The heavy fluid, above light fluid (Rayleigh—Taylor) problem is calculated using tt
multiphase particle-in-cell numerical scheme. The calculation is three-dimensional :
is in a brick-shaped container. The heavy fluid is a mixture of fluid and particles. T
interphase drag is large producing the mixture fluid. The particles are a single size
density and are uniformly, randomly distributed in the upper section of the container.
initial perturbation is placed on the interface. Small perturbations result from the rand
distribution of particles. Table Il gives the calculation parameters.

Six calculations were made at four Atwood numbers. Two calculations were at the se
Atwood number and a different grid density. Two calculations were at the same Atwa
number but different levels of perturbation magnitude. Figure 3 shows the calculated dev
ping mixing layer forA = 0.1667, looking at an angle from the bottom. Figure 4 shows
slice in the middle of the container.

The growth rate of the mixing layer is shown in Fig. 5. The curves turn over at the e
time as the mixing layer reaches the bottom wall. All calculations fit well \mitlsing
a = 0.07, which, in turn, compares well with the measured data.

C. Gravity-Dominated Particle Flow

A uniform, well-mixed suspension of sand particles and air are left to settle to close pa
The calculation parameters are given in Table Ill. Particles are initially motionless and

TABLE II
Rayleigh—Taylor Calculation

Particle radius 0.002(m) 0.001 «m) 0.001 fem) 0.001 «m)
Particle density 10 (kg/@y 5 (kg/n?) 3 (kg/nP) 11 (kg/n?)
Fluid density 1 (kg/r#) 1 (kg/n?) 1 (kg/n¥) 1 (kg/n?)
Initial particle volume fraction 0.2 0.2 0.2 0.2
Particle mixture density 2.8 (kgin 1.8 (kg/n?) 1.4 (kg/n¥) 3 (kg/nP)
Interphase drag PG 100 st 10 st 10 st

X, Y, zgravity 0,-9.8,0(m/8) 0,-9.8,0(m/$) 0,-9.8,0(m/8) 0,-2,0(m/S)
Numberx, y, andz cells 40x 40 x 80 40x 40 x 80 40x 40 x 80 50x 50 x 90
x-range 10 cm 10 cm 10 cm 10 cm
y-range 10 cm 10 cm 10 cm 10 cm
z-range 20cm 20cm 20cm 20cm
Atwood number 0.4737 0.2857 0.1667 0.5
Number particles Bx10° 5.3x1C° 5.3x10° 2x10°

Calculation time step 0.002's 0.002s 0.002 s 0.002s
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FIG. 4. Side view and cut through center of three-dimensionally growing plumeA fer0.1667 att = 0.9 s.
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FIG.5. The growth rate of the mixing width.
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TABLE 11l
Gravity-Dominated Flow Calculation

Number of parcels 162,057
Particle radius 30(m
Particle density 2500 kg/in
Fluid density 1.093 kg/th
Fluid viscosity 195x 1075 kg/ms
Initial particle volume fraction 0.3

P 10 Pa

B 2

Ocp 0.6
Gravity 00,-9.8m/g
Number cells 15< 15x 40
Size of container 18 x 13.8 x 30 cm
Calculation time step 0.002's

Note.Particles are initially uniformly randomly dis-
tributed in a container.

uniformly, randomly distributed which give initial small fluctuations in volume fraction
about the average 0.3 volume fraction, as shown in Fig. 6. The driving force is from grav
The particles are heavy with a constant, relatively large size, and the fluid is light, which gi
gravity-dominated flow in the 0.3-m deep container. The upper mixture interface betwe
suspended particles and clarified fluid is approximated weli bygt?/2. Figure 6 shows
the particle volume fractions, and Fig. 7 shows the patrticle distributions at stages of fillii
The interface between clarified fluid and mixture at 0.1 and 0.15 s matches well with -
gravity-dominated flow values of 0.25 and 0.19 m from the bottom, respectively. The M
PIC solution, with the particle normal stress model presented in this text, gives a natt
settling to close pack. Figure 6 shows that at 0.2 s the entire particle mixture is close p:
and at 8 s ndurther settling beyond close pack has occurred.

0.7 r
--- t=0s
0.6 o o—ot=01s
- —at=0.15s
) 05 | ——=t=0.2s
= 0.
] o—et=8s
dé 04 }
=
g 03}
ko)
]
T 02}
o
0.1
0
0 0.1 0.2 0.3

Vertical distance (m)

FIG. 6. Volume fraction at times during gravity-dominated sedimentation.
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0.05s 0.1s 0.15s 02s 05s

FIG. 7. Particle distribution at times during gravity-dominated sedimentation. Particles are colored basec
local particle volume fraction.

D. A Three-Dimensional Jet of Particles

In the first two test problems, the particle normal stress is not a big player. The rob
solution method for a dynamic problem where particles are jammed to close packis dem
trated in the jet test problem. A jet of particles from a 1.5-cm tube is directed onto a
plate at high velocity. The inlet blowtube pressure boundary is 10 kPa, and the bounc
conditions at the periphery of the calculation domain except for the bottom flat plate -
0 kPa. The gas velocity in the blowtube is on the order of 25 m/s. Particles are fed :
particle volume fraction of 0.3. Details of the calculation are given in Table IV.

Figure 8 shows particles impacting the plate. The particles hit the plate and spread
cularly from the point of impact. As the vertically traveling particles slow and turn ot
horizontally, the particles pack to near close pack under the jet. The color of partic
corresponds to the particle volume fraction. Black is near close pack, and Fig. 8 sh
the dark core of close pack particles under the jet. Figure 9 shows the time history of
volume fraction at the wall under the jet. The particle volume fraction quickly approach
close pack and then stays slightly below the close pack value. There is a small high frequ

TABLE IV
Particle Jet Calculation

Number of parcels (dat= 0.8s) 70,797
Particle radius 74 to 180m
Particle density 2760 kgfin
Fluid density 1 kg/mh
Fluid viscosity 0.02 kg/ms
Ps 100 Pa

B 3

Ocp 0.5
Gravity 0,0, -9.8 m/g
Number cells 24 24 x 14
Domain 27x 27 x 17 cm
Blow tube diameter 1.5cm
Particle feed particle volume fraction 0.3
Feed pressure 10 kPa
Boundary pressure 0 kPa
Calculation time step 0.00005 s

Note.Particle sizes fed in a Gaussian distribution about the mean radius.
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t=0.12s

t=012s

FIG. 8. Particle jetimpacting a flat plate. Particle color is based on local volume fraction.

fluctuation riding on the particle volume fraction. The ability to calculate close pack
this highly dynamic problem of particles jamming onto a wall illustrates the robustness
the calculation method. The presented model and its associated algorithm for the par
normal stress force provides excellent performance.



DENSE PARTICLE FLOW MODEL 547

0.6 T

05 o - o R B R S AT S T SASTSATmESIoo .

0.3 H R

0.2 H 4

Particle volume fraction

|
0 0.2 0.4 0.6 0.8
Time (s)

FIG. 9. The particle volume fraction at the wall under the jet.

VIl. CONCLUDING REMARKS

The MP-PIC Eulerian—Lagrangian numerical scheme for particle flow has been exten
to three dimensions. While not discussed in this paper, the three-dimensional solu
addresses the problem of gridless particle flow in intricate geometries specified by C
drawings. The numerical scheme has been applied and can solve a wide variety of prob
in complex geometries.

This paper defines and formalizes interpolation operators and their properties wt
provide compact support, are both locally and globally conservative, and are suitable
three-dimensional calculations. These operators are essential to robust and fast sol
methods.

A subgrid model was presented for modeling the particle normal stress applied to disc
particles. The algorithm implementing the model is fast and robust. Using the new parti
normal stress model eliminates implicit solutions or fractional time step methods previou
required by the highly nonlinear, particle normal stress. The calculated results show exce
performance from the model.

APPENDIX A
The interpolation operator defined above with the property given by Eq. (19) is cons

vative. This is shown by mapping the particle propertyto grid nodez, which gives the
grid particle property

Np
Mp, = Z S (Xp,)Mp, » (al)
k=1

where the total number of particlesh&,.
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The grid propertyM,, mapped back to particle positiom, is

Mp, = Z S (Xp,) Mz, (a2)

where N is the number of nodes, which includes all nodes supporting the interpolati
operators.
Putting (al) into (a2) and reordering the summations gives

Zmpx Zsc Xp ) S (Xp, )- (@3)
k=1

Using the definition of the product of interpolation operators, Eq. (19),

N
Mp, = Mp, Z S (Xp,) (a4)

£=1

and becaus@j?zl S (Xp,) = 1,the particle propertyn,, , forthe particle a, is recovered.
The mapping of the particle property to the grid and the subsequent mapping of the prop
to a particle is conservative.

Now examine the mapping of a grid property to particles and the remapping of parti
properties back to the grid. Start with the mapping of grid prop&tty, to particle positions
Xp, for all particles as given by (a2). The particle property is interpolated back to the g|
using (al). Putting (a2) into (al) gives

Y, = ZZ S (Xp.) S (Xp. ) Mpe. (ad)

k=1 &=1

The product of the interpolation operators is defined by Eq. (19). Only one combination
the products is not zero, and the summation over nodes reduces to a single value.

Np
Woe =Y S (Xp,) Mpe. (ab)
k=1

The grid propertyM,,, does not depend on particle position and can be removed from t
summation, giving

Np
Wpe = Mp; Z S (Xp,)- (a7)
k=1

The portion of the grid properti ., originally mapped to a particle positions, is mapped
back from particles to grid node The process is conservative.
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