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A three-dimensional, incompressible, multiphase particle-in-cell method is pre-
sented for dense particle flows. The numerical technique solves the governing equa-
tions of the fluid phase using a continuum model and those of the particle phase using
a Lagrangian model. Difficulties associated with calculating interparticle interactions
for dense particle flows with volume fractions above 5% have been eliminated by
mapping particle properties to an Eulerian grid and then mapping back computed
stress tensors to particle positions. A subgrid particle, normal stress model for dis-
crete particles which is robust and eliminates the need for an implicit calculation of
the particle normal stress on the grid is presented. Interpolation operators and their
properties are defined which provide compact support, are conservative, and provide
fast solution for a large particle population. The solution scheme allows for distribu-
tions of types, sizes, and density of particles, with no numerical diffusion from the
Lagrangian particle calculations. Particles are implicitly coupled to the fluid phase,
and the fluid momentum and pressure equations are implicitly solved, which gives a
robust solution. c© 2001 Academic Press

Key Words:two-phase flow; Eulerian–Lagrangian flow; particle flow; multiphase
particle-in-cell (MP-PIC); three-dimensional finite volume; Rayleigh–Taylor insta-
bility.

I. INTRODUCTION

Mathematical models of separated particulate multiphase flow have used either a contin-
uum approach for all phases [1, 2] or a continuum for the fluid and a Lagrangian model for
particles [3]. The continuum–continuum model readily allows modeling of particle–particle
stresses in dense particle flows using spatial gradients of particle volume fractions [2, 4].
However, modeling a distribution of types and sizes of particles complicates the contin-
uum formulation because separate continuity and momentum equations must be solved for
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each size and type [4, 5]. Using a continuum model for the fluid phase and a Lagrangian
model for the particle phase allows economical solution for flows with a wide range of
particle types, sizes, shapes, and velocities [4, 6]. However, the collision frequency is high
for volume fractions above 5% and cannot be realistically resolved by current Lagrangian
collision calculations [6].

Particle-in-cell (PIC) methods have been used since the 1960s [7]. Fluids are represented
by discrete mass points. The differential conservation equations of mass, momentum, and
energy govern the flow, although the conservation of mass is satisfied by the summation of
mass points in a computational cell. Nontransport terms are calculated from the differential
equations, and the transport terms are calculated from mass points moving by a velocity
weighting procedure. The initial motivation for PIC methods was probably the accuracy
in following interfaces. However, the calculation of convection is very accurate because of
the Lagrangian nature of the PIC methods, and PIC methods offer the promise of subgrid
resolution of those properties which are not updated on the grid. O’Rourke and Amsden
[8] presented particle-in-cell models applied to chemically reacting flow. Particle properties
were interpolated to the grid, and the flow field and particle interactions were calculated
on the grid at the advanced time step. Properties were then interpolated back to particles.
The calculation of particle interactions on the grid increased computational efficiency with
no significant increase in numerical error. Andrews and O’Rourke [9] extended the PIC
scheme to a multiphase particle-in-cell (MP-PIC) method for one-dimensional Eulerian–
Lagrangian flow. In the method, particles are treated both as particles and as a continuum.
The particle stress gradient, which is difficult to calculate for each particle in dense flow,
is calculated as a gradient on the grid and is then interpolated to discrete particles. Snider
et al. [10] extended the method to be two-dimensional, with an improved grid-to-particle
interpolation method.

This paper retains the basic concept of treating particles both as a continuum and as
discrete particles. Particle properties which are best calculated on the grid are calculated
on the grid, and other particle properties are calculated at discrete particle locations. This
paper defines interpolation operators and their properties which are well suited to three-
dimensional calculations. The operators are fast and are shown to be locally and globally
conservative. A model for the particle normal stress force on discrete particles is presented.
The solution algorithm uses a split operator on the particle momentum calculation and a
subgrid particle, normal stress applied to discrete particles. The solution method eliminates
the need for a costly implicit solution of the particle normal stress on the grid. Further, the
particle and fluid phases are implicitly coupled which provides a robust solution.

II. GOVERNING EQUATIONS

A. Continuum Phase

The continuity equation for the fluid with no interphase mass transfer is

∂θ f

∂t
+∇ · (θ f u f ) = 0, (1)

whereu f is the fluid velocity andθ f is the fluid volume fraction.
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The momentum equation for the fluid is

∂(θ f u f )

∂t
+∇ · (θ f u f u f ) = − 1

ρ f
∇ p− 1

ρ f
F+ θ f g, (2)

whereρ f is fluid density,p is fluid pressure, andg is the gravitational acceleration.F is
the rate of momentum exchange per volume between the fluid and particle phases. The
fluid phase is incompressible and fluid and particle phases are isothermal. The momentum
equation presented here neglects viscous molecular diffusion in the fluid but retains the
viscous drag between particles and fluid through the interphase drag force,F. Neglecting
the laminar fluid viscous terms generally has negligible effect on dense particle flow, and
laminar terms can be easily included in the fluid equation set. For the more interesting
turbulent flow, there are currently no suitable models for dense particle flow. Large density
and size particles act as large eddies of momentum transfer while gas flow around close
pack particles produces small subgrid eddies and dissipation. Further, momentum transfer
at walls is complicated by particles covering walls with particle sizes on the same order or
larger than the viscous sublayer. This paper does not address turbulent dense particle flow.
However, the discrete particle to fluid momentum transfer (which is a turbulent closure
model for subgrid momentum transfer between particles and fluid) generally produces low
Reynolds numbers (based on particle diameter) and provides an excellent prediction of
dense particle flows over a wide range of gas flow.

B. Particulate Phase

The dynamics of the particle phase is described using the particle probability distribution
functionφ(x, up, ρp, Äp, t), wherex is the particle position,up is the particle velocity,ρp

is the particle density, andÄp is the particle volume. For the present it is assumed that the
mass of each particle is constant in time (no mass transfer between particles or to the fluid),
but particles may have a range of sizes and densities. The time evolution ofφ is obtained
by solving a Liouville equation for the particle distribution function [11],

∂φ

∂t
+∇ · (φup)+∇up · (φA) = 0, (3)

where∇u is the divergence operator with respect to velocity. The discrete particle acceler-
ation is [9]

A = Dp(u f − up)− 1

ρp
∇ p+ g− 1

θpρp
∇τ. (4)

The terms represent acceleration due to aerodynamic drag, pressure gradient, gravity, and
gradient in the interparticle stress,τ .

The probability function integrated over velocity and mass gives the probable number
of particles per unit volume atx andt in the interval(up, up + dup), (ρp, ρp + dρp), and
(Äp, Äp + dÄp). The particle volume fraction is defined from the particle distribution
function as

θp =
∫ ∫ ∫

φÄp dÄp dρp dup. (5)
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The interphase momentum transfer function per volume in the Eulerian momentum equa-
tion is

F =
∫ ∫ ∫

φÄpρp

[
Dp(u f − up)− 1

ρp
∇ p

]
dÄp dρp dup. (6)

The Eulerian governing equations for the particle phase may be obtained by taking the
moments of Eq. (3). By multiplying Eq. (3) byρpÄp andρpÄpup and integrating over
particle density, volume, and velocity coordinates, the particle conservation equations are
obtained. The particle continuity equation is

∂(θpρp)

∂t
+∇ · (θpρpūp) = 0 (7)

and the particle momentum equation is

∂(θpρpūp)

δt
+∇ · (θpρpūpūp) = −θp∇ p−∇τp + θpρpg

+
∫ ∫ ∫

φÄpρp Dp(ug − up) dÄp dρp dup

−∇ ·
[∫ ∫ ∫

φÄpρp(up − ūp)(up − ūp) dÄp dρp dup

]
, (8)

where the mean particle velocitȳup is given by

ūp = 1

θpρp

∫ ∫ ∫
φÄpρpup dÄp dρp dup, (9)

and the average particle density is given by

θpρp =
∫ ∫ ∫

φÄpρp dÄp dρp dup. (10)

The sum of volume fractions of fluid and particle phases must equal unity,θp + θ f = 1.

III. INTERPOLATION OPERATORS

A. Interpolation Operators

Particle properties are interpolated to and from the Eulerian grid in the MP-PIC scheme.
Interpolation operator properties are defined which are both locally and globally conserva-
tive in mapping to and from the grid. This study uses a staggered grid where momentum
properties are calculated at cell faces and scalar properties are calculated at cell centers.
Both scalar and momentum particle properties are needed. The continuity equation and
pressure equation are calculated at cell centers. The momentum transfer between particles
and gas is calculated at cell surfaces. This requires four sets of interpolation operators in
three dimensions. Scalar properties, at cell centers, are mapped with one set of interpolation
functions. Momentum properties, at face centers, are mapped with three other sets. The
operators have the same definition but have different support in the axis of interpolation.
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This study uses linear interpolation operators, but the scheme is applicable to other
interpolation operators. The three-dimensional, trilinear interpolation operators are formed
from the product of directional operators in thex, y, andz directions,

S= Sx SySz. (11)

If a nonorthogonal grid is used, control volumes and particles are transformed to a square
computational grid. The interpolation operators and gradients are calculated and then trans-
formed back to the grid. The following discussion is for a rectangular computational grid.

For a particle located atxp, wherexp = (xp, yp, zp), the cell centerx-directional inter-
polation operator,Sx

i (xp), is an even function, independent of they andz coordinates, and
has the properties

Sx
i (xp) =

{
0 xi−1 ≥ xp ≥ xi+1

1 xp = xi

(12)

and ∑
i

Sx
i (xp) = 1 (13)

for all nodes,i, and in particular for nodes supportingSx
i (xp). Similarly, they-operator,

Sy
j (yp), is an even function, independent of thex andz coordinates, and thez-operator,

Sz
k(zp), is an even function, independent of thex andy coordinates. In two dimensions,

four cell center grid nodes support the interpolation to particle positionxp, and in three
dimensions, eight grid nodes support the interpolation.

The face center directional interpolation operators are defined similarly to cell center
operators. Thex-face, directional interpolation operator has the properties

Sx
i+1/2(xp) =

{
0 xi−1/2 ≥ xp ≥ xi+3/2

1 xp = xi+1/2

(14)

and ∑
ξ

Sx
ξ (xp) = 1 (15)

for all face nodes,ξ , and in particular for nodes supportingSx
ξ (xp). Similarly, they-face

andz-face operators are defined.
Thex, y, andzcell center directional operators for particleκ at locationxp are abbreviated

Sx
i,κ , Sy

j,κ , andSz
k,κ . Thex,y, andzcell face directional operators are abbreviatedSx

i /2,κ , Sy
j/2,κ ,

andSz
k/2,κ . The interpolation operators to particleκ at locationxp are:

Cell center interpolation operator:Si, j,k,κ = Sx
i,κ Sy

j,κ Sz
k,κ

x-face interpolation operator: Si /2, j,k,κ = Sx
i /2,κ Sy

j,κ Sz
k,κ

y-face interpolation operator: Si, j/2,k,κ = Sx
i,κ Sy

j/2,κ Sz
k,κ

z-face interpolation operator: Si, j,k/2,κ = Sx
i,κ Sy

j,κ Sz
k/2,κ .

The interpolation operatorSsatisfies
∑

ξ Sξ (xp) = 1 for the support nodesξ .



528 D. M. SNIDER

The cell center,x-linear interpolation operator atxp on the computational grid is

Sx
i =

xi+1− xp

xi+1− xi
. (16)

Similarly, theSy andSz operators are defined. The face cell directional interpolation op-
erators are defined in the same way as the cell center interpolation operators, except using
face nodes.

The cell volume fraction at grid (i, j, k) is

θpi, j,k =
1

Äi, j,k

Np∑
κ=1

npκÄpκ
Si, j,k,κ , (17)

where the summation is over all particles,Äp is a particle volume,np is the number of
particles in a parcel (a cloud of particles all with the same properties),Np is the number of
parcels or clouds, and the grid cell volume isÄi, j,k.

B. Product of Interpolation Operators

The numerical scheme implicitly couples particles within the continuum fluid momentum
equation, which leads to the product of interpolation operators such as

Sζ (xp)

8∑
ξ

Sξ (xp)Qξ =
8∑
ξ

Sζ (xp)Sξ (xp)Qξ , (18)

where the grid propertyQ was mapped to a particle location and then back from particles to
the grid. The expansion of Eq. (18) produces eight products of interpolation operators and
results in a 27-point stencil for theQproperty, in two dimensions. The resulting large stencil
in three dimensions is computationally and computer memory expensive. The properties
of product of interpolation operators are defined here which give compact support for the
mapping. The interpolation operator properties are less diffusive than direct expansion of
Eq. (18), and the operators are shown, in Appendix A, to be conservative.

The product of interpolation operators is defined as

Sζ

(
xpκ

)
Sξ (xpι) =

{
Sξ

(
xpκ

)
if ξ = ζ andι = κ

0 if ξ 6= ζ or ι 6= κ,
(19)

whereζ andξ are grid nodes andι andκ are particle location indices.

C. Gradient of Interpolated Properties

A grid property,Q, mapped to particle locationxp, is

Qp =
N∑

ξ=1

Sξ (xp)Qξ , (20)
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whereN is the grid nodes in support of the interpolation operatorSξ . The gradient of the
particle property is

∇Qp =
N∑

ξ=1

∇Sξ (xp)Qξ +
N∑

ξ=1

Sξ (xp)(∇Q)ξ . (21)

At time t, the particle position and grid are fixed, and the first term is zero. The interpolation
of the gradient to the particle position becomes

∇Qp =
N∑

ξ=1

Sξ (xp)(∇Q)ξ . (22)

D. Product of Interpolation Operator and Gradient of Interpolation Operator

The product of interpolation operator and the gradient of the interpolation operator is

∇Sζ (xp) ·
8∑

ξ=1

Sξ (xp)∇Qξ =
8∑

ξ=1

∇Sζ (xp) · [Sξ (xp)∇Qξ ], (23)

where the grid property∇Q was mapped to a particle location and then back from particles
to the grid. The product of the interpolation operator and gradient of the interpolation
operator is

∑
ξ

Sζ∇Sξ =
∑

ξ

Sxζ
Syζ

Szζ

[
∂Sxξ

∂x
Syξ

Szξ
ex +

∂Syξ

∂y
Sxξ

Szξ
ey +

∂Szξ

∂z
Sxξ

Syξ
ez

]
, (24)

where the unit vector ise= (ex, ey, ez).
The definition of the product of interpolation operators requiresSξ Sζ = Sξ if ζ = ξ ,

else 0. Because an interpolation operator is formed from directional operators which are
functions of only one independent direction, then for the product rule Eq. (19) to be true,
the product of directional operators must also follow the product rule. That is,

Sx
ζ

(
xpκ

)
Sx

ξ (xpι) =
{Sx

ξ

(
xpκ

)
if ξ = ζ andι = κ

0 if ξ 6= ζ or ι 6= κ
(25)

for thex-directional operator, and similarly for they- andz-directional operators.
The product of interpolation operator and gradient of interpolation operator then reduces

to

∇Sζ (xp) ·
8∑

ξ=1

Sξ (xp)∇Qξ = Sζ

[
∂Sxζ

∂x
ex +

∂Syζ

∂y
ey +

∂Szζ

∂z
ez

]
· ∇Qζ . (26)

For a linear interpolation, the derivative of the directional interpolation operator is a top-hat
function.
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IV. NUMERICAL SOLUTION

The governing equations for fluid and particles are solved on the computer. A computa-
tional particle method is used to solve for the particle distribution rather than direct solution
of the Liouville equation. Particle properties are interpolated to and from the grid using
the interpolation operators. The incompressible, three-dimensional continuum equations
are solved using a finite volume method. The numerical method implicitly couples phases
through the interphase momentum transfer. New time values are superscriptn+ 1 and old
time values are superscriptn.

The conservation equations are approximated by finite volumes with staggered scalar
and momentum nodes. The basic numerical scheme presented was also implemented on
a collocated grid where both momentum and scalar variables are defined at a cell center.
An advantage in using the collocated scheme is the use of only cell center interpolation
operators for mapping particle properties to and from the grid. In the initial development, the
collocated grid solution was not as robust as the natural staggered grid, and the collocated
solution method was set aside.

A. Particle Equations Finite Difference Approximation

Particles are grouped into computational parcels (clouds) each containingnp particles
with identical mass density,ρp, volume,Äp, and velocity,up, located at position,xp. The
Liouville Eq. (3) is the mathematical expression of conservation of particle numbers in
volumes moving along dynamic trajectories in particle phase space. Thus the number of
particles,np, associated with a parcel is constant in time. Because there is no mass exchange
between particles, a particle’s mass,mp, is also constant. Parcel positions are updated by

xn+1
p = xn

p +1tun+1
p (27)

and the particle velocity is updated from integration of Eq. (4).

un+1
p =

un
p +1t

[
Dpun+1

f,p −
1

ρp
∇ pn+1

p − 1

ρp θp
∇τ n+1

p + g
]

1+1t Dp
, (28)

whereun+1
f,p is the interpolated implicit fluid velocity at the particle location,∇ pn+1

p is the
interpolated implicit pressure gradient at the particle location,∇τ n+1

p is the interpolated
particle stress gradient at the particle location,g is gravity acceleration, andDp is the drag
coefficient.

B. Interphase Drag Model

The interphase drag model used here is [4]

Dp = Cd
3

8

ρ f

ρp

|u f − up|
r

, (29)

where

Cd = 24

Re
θ−2.65

f (1+ 0.5Re0.687) Re< 1000

Cd = 0.44θ−2.65
f Re≥ 1000.

(30)
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The Reynolds number is defined as

Re= 2ρ f |u f − up|r
µf

, (31)

whereµf is the gas viscosity and the particle radius is

r =
(

3Äp

4π

)1/3

. (32)

C. Particle Normal Stress Model

The particle velocity given by Eq. (28) can be solved directly at each time step using fluid
properties updated from the current time step (new-time fluid velocities and pressure fields)
and old-time properties for the particle normal stress tensor. However, because the particle
normal stress is highly nonlinear, simply using old-time values for the particle normal stress
and applying the gradient to particles in a cell does not work when particles are near close
pack. Over a finite time interval, particles not unduly restricted by the old-time particle
normal stress can enter a control volume (or within its interpolation range) and push the
particle volume fraction to close pack. This, in turn, gives a very large particle normal
stress which forces all particles out of the cell. One solution is to reduce the calculation
time step or use subtime intervals for the particle momentum equation solution and volume
fraction. Then the particle stress builds over each time step as particles approach the close
pack volume fraction, and the particles stop before close pack occurs. If the particle has
significant momentum, the time step needed may be very small, and in any case the method
is computationally expensive. Another approach used by Snideret al. [10] was an implicit
scheme for calculating the volume fraction (particle normal stress) on the Eulerian grid
and then applying the implicit new-time, particle normal stress gradient to particles. The
implicit scheme worked well for a wide range of flow conditions [12].

There are drawbacks to the implicit calculation of the particle volume fraction method
used by Snideret al. [10]. The Eulerian implicit calculation of volume fraction is used
solely to calculate the particle normal stress and is discarded at the end of a calculation
step. The final volume fraction is calculated from mapping particle volumes to the grid. The
implicit volume fraction equations are derived from a Taylor series expansion of Eq. (17),
which includes the particle velocities, which in turn, includes the volume fraction through
the nonlinear particle normal stress. The nonlinear volume fraction equations are solved
by linearizing the particle normal stress and then iteratively solving the resulting linear
equations, updating the linearized coefficients each iteration step [15]. The highly nonlinear
volume fraction equations are difficult to solve and can be computationally expensive.

A second problem with the implicit calculation of the volume fraction is accuracy. The
constant coefficients in the linearized volume fraction equations contain gradients of the
particle interpolation operators. The problem arises because the interpolation gradient for
discrete particles changes sign as particles move from one interpolation support to another.
The fixed interpolation gradients in the Eulerian volume fraction coefficients do not reflect
the change of gradients as particles move. The implicit solution can predict a nonphysical,
negative volume fraction. The implicit calculation of volume fraction conserves volume,
even if the local volume fraction is negative, and a false decrease in volume fraction at one
node has an associated false increase in volume fraction at its neighbor node. Limiting the
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minimum value of the Eulerian calculated volume fraction to zero does not pose a problem
in the solution scheme. A small volume fraction results in a trivial particle normal stress in
the particle velocity calculation. On the other hand, a small error in volume fraction near
close pack can give a very large particle normal stress and catastrophic results.

A new particle stress model is presented here. The particle normal stress is modeled by
a continuum calculation of the particle pressure and the subsequent normal stress force
is applied to discrete particles. The new Lagrangian discrete particle stress model which
uses the stress gradient, eliminates the need for an implicit solution for the particle normal
stress (particle volume fraction). The model is robust and fast which makes it well suited
for three-dimensional calculations. Calculations using the new particle normal stress model
compare well with experimental data.

Collisions between particles, where particles are modeled as a continuum, are estimated
by an isotropic interparticle stress where the off-diagonal elements of the stress tensor are
neglected. The continuum particle stress model used in this study is an extension of the
model from Harris and Crighton [13]

τ = Psθ
β
p

max[θcp− θp, ε(1− θp)]
. (33)

The constantPs has units of pressure, andθC P is the particle volume fraction at close packing.
For the constantβ, Auzeraiset al. [14] recommend 2≤ β ≤ 5. The original expression by
Harris and Crighton was modified to remove the singularity at close pack by adding theε

expression in the denominator. Theε is a small number on the order of 10−7. The particle
stress is unaffected by the modification except when the volume fraction approaches or
exceeds close pack. The close pack limit is somewhat arbitrary and depends on the size,
shape, and ordering of the particles. Therefore allowing the particle volume fraction to reach
or slightly exceed close pack is physically possible considering that shifting or rearranging
of granular materials may occur.

The particle stress Eq. (33) depends only on the concentration of particles and neglects
the size and velocity of particles. A more complex, continuum particle normal stress model
based on dense phase kinetic gas theory has been developed [15–17]. The model given by
Lun et al. [16] is

τ = [θpρ̄ p + θ2
pρ̄ p(1+ γ )go

]
2, (34)

whereγ is a restitution coefficient, and ¯ρ p is an average particle density. The granular
temperature,2 is given by

2 = 1

3
〈C2〉, (35)

whereC is the instantaneous minus hydrodynamic velocity of the particle averaged over
the velocity space. The radial distribution function is

go = 3

5

[
1−

(
θp

θcp

)1/3
]−1

. (36)
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FIG. 1. Illustration of particles in a close pack volume.

The simple model, given by Eq. (33), contains the most important aspect of the kinetic
theory model which is the dependency of normal stress on the particle concentration (particle
volume fraction).

The Lagrangian or discrete particle solution allows subgrid modeling of the force. A
model for the particle normal stress gradient applied to discrete particles is presented. The
continuum particle pressure gradient from Eq. (33) gives the force on particles due to
motion and inelastic collision of particles. The pressure gradient is assumed to be applied
to particles in three general physical states near close pack. The three particles are shown
in Fig. 1. For the initial discussion the mean velocity of particles (particles moving within
a moving frame of reference) is zero but is later included in the model.

Consider the particle (cloud)A shown near the wall in Fig. 1. The particle is surrounded
by neighbor particles or a wall and has zero mean velocity. For a large particle normal stress
gradient, the resulting particle velocity and distance traveled based on only the particle
normal stress may be unrealistically high. In the packed bed, the particle movement is
limited to the particle collision mean free path and stress transfer to the wall. The effect of
the large particle normal stress on particles deep within the packed bed is to slightly expand
the bed.

Consider particle (cloud)B, shown in Fig. 1, which rapidly approaches a close pack
cell. The particle may be traveling through a low particle volume fraction region where the
mean free path between particles is large, and its movement is not unduly restricted. The
particle also may be within a stream of densely packed particles (particles moving within a
moving frame of reference) and moving at the stream velocity. As the particle approaches
the packed cell, the large particle normal stress from the close pack bed begins to reduce the
particle’s velocity. As the particle reaches the close packed region, the large particle normal
stress stops the particle from penetrating into the cell and moves it away from the volume
center. The physical process is collision with other particles and an elastic restitution.

Consider a particle leaving a near close pack bed, as shown by particleC in Fig. 1. The
particle may have been forced from the bed by the particle normal stress or by other forces.
The collision between particles diminishes as the particle moves away from the close pack
volume, and the particle normal stress decreases. The particle mean free path increases and
the particle has less restriction from collision with neighbor particles.
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A computational algorithm is developed to model the proposed particle behavior de-
scribed above. The particle velocity calculation is split into two parts, where the velocity
is the sum of the particle velocity from the particle normal stress, and the velocity from all
other forces. For a discrete particle

un+1
p = ũp + upτ . (37)

The numerically integrated particle velocity without the particle normal stress force is

ũp =
un

p +1t Dpun+1
f,p −

1t

ρp
∇ pn+1

p +1tg

1+1t Dp
. (38)

The estimated discrete particle velocity from the continuum particle normal stress gradient
is

δupτ = − 1t∇τp

ρpθp(1+1t Dp)
. (39)

An intermediate particle volume fraction calculation could be made at the end of the
first-step velocity calculation, using the particle velocity from Eq. (38), which includes
all forces on the particle except the particle normal stress. Intermediate particle locations
could be calculated, and the particle volume interpolated to the grid giving an intermediate
particle volume fraction, which, in turn, can be used to estimate the new-time continuum
particle normal stress. The intermediate particle normal stress gradient would then be used
in the second-step velocity calculation using Eq. (39). The calculation of an intermediate
volume fraction is the same process as that at the end of the time step to get the new-
time volume fraction. Because particles are numerically contained within the grid which
is a ray tracing process, the intermediate calculation of volume fraction from interpolating
particle volume to the grid would add a computationally expensive step for complex three-
dimensional geometries. An alternative intermediate estimate of the volume fraction could
be calculated on the grid using the Taylor series expansion of Eq. (17) as described by
Snideret al. [12]. While this approach has merit, the extra computational time was found
not to be warranted, and this intermediate particle stress calculation is not included in this
model.

The particle normal stress, as given by Eq. [33], is only important near close pack and
has little effect elsewhere. As an example of the magnitude of the particle normal stress,
consider dense particle flow of sand (ρp = 2500 kg/m3) at 92% close pack. For a close
pack volume fraction ofθp = 0.6 and a steep volume fraction gradient from 0 to 0.55, the
particle acceleration from particle normal stress is 0.048 m/s2 usingPs = 10 Pa andβ = 3
in Eq. [33]. Using gravity as a reference, the particle normal stress is small. As the particle
volume fraction approaches close pack, the particle stress becomes extremely large. The
continuum particle normal stress gradient applied to discrete particles is limited by the
parcel velocity relative to mean flow velocity in the orthogonal directionseκ = (ex, ey, ez).
The new time velocity is

∇τ ≤ 0

u′pτ κ
= min(eκ · δupτ , (1+ γ )(Ūp − ũp) · eκ) (40)

upτ κ
= max

(
u′pτκ

, 0
)
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∇τ > 0

u′pτ κ
= max(eκ · δupτ , (1+ γ )(Ūp − ũp) · eκ) (41)

upτ κ
= min

(
u′pτ κ

, 0
)
,

where the particle velocity isupκ
= (upx , upy, upz), γ is an elastic restitution factor, and the

mean particle velocity,̄Up, is the base or mean free flow of the particles where particles are
moving within a moving frame of reference. The choice of variables in Eqs. (40) and (41)
is to integrate the forces on the particle and to work with velocities.

The described particle normal stress model for discrete particles is designed for fast
computational speed while having a physical basis for applying the particle normal stress
gradient. The model, given by Eqs. (40) and (41), is applied to the three particles shown in
Fig. 1. The particle normal stress gradient for the packed bed is large and negative, which
gives a large positive velocity from the particle normal stress alone (Eq. (39)).

ParticleA, at the bottom of the stagnant bed, has a gravity force and possible fluid
drag giving a negative velocity. The resulting particle normal stress velocity from Eq. (40)
matches the velocity from gravity and fluid drag from Eq. (38). The resulting combined
velocity from Eq. (40) is zero or a small positive velocity from elastic restitution. The
particle may move slightly in the direction of the particle normal stress force, but, for the
most part, the particle remains stationary (relative to the particle base flow).

ParticleB rapidly approaches the packed bed. Away from the packed bed, the particle
velocity from Eq. (38) is greater than the velocity from the particle normal stress and
the particle will slow from the particle normal stress, but the particle will continue to
move toward the packed region. As the particle moves closer to the packed bed, the particle
velocity is less than the velocity resulting from a large particle normal stress, and the particle
is stopped and bounces back depending on the elastic restitution factor.

ParticleC is moving away from the packed region and is at the fringe of the packed bed
where the volume fraction is low. The resulting normal stress particle velocity from Eq.
(40) is zero, and the particleC velocity is not restricted by the particle normal stress and its
velocity is given by Eq. (38).

The model needs one additional property which is the combination of properties for
particlesA andC. The particle is moving in the direction of the particle pressure force but
is within the packed bed. The particle motion will be limited by particle collisions. The
model limits the motion of particles in close pack region to a collision mean free path. A
mean free path is defined as

` = f r̄ p, (42)

where r̄ p is an effective particle radius. The formula for the mean free path given by
Gidaspow [4],

` = 1

3
√

2

r̄ p

θp
, (43)

provides guidance in definingf .
The particle normal stress model given in this paper gives a natural limiting of the particle

volume fraction to close pack. There are no other restrictions to force particles to less than
close pack besides those applied in the particle stress model. The particle normal stress
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gradient as given in the particle momentum Eq. (4) is conservative [9]. The particle stress
model described in this paper conserves the interpolation of the particle stress gradient
to and from the grid except in the narrow volume fraction region at close pack. This lack
of conservation of interpolating the stress gradient to and from the grid at close pack
is inconsequential for a number of reasons. First, numerically, the grid particle normal
stress is not used in an Eulerian solved conservation equation. If the gradient is needed for
an Eulerian conservation calculation, the particle stress mapped to the grid will give the
consistent particle normal stress gradient. Secondly, because the grid particle normal stress
models (either the simple model Eq. (33) or the more complex model based on kinetic
theory of gases [15]) has such an extreme nonlinear variation in force with only a small
change in volume fraction at close pack, the adjustment in particle stress gradient for discrete
particles gives very close to the same calculated volume fraction from either the particle or
the Eulerian solution (both give a calculated volume fraction near close pack).

V. EULERIAN NUMERICAL APPROXIMATIONS

The Eulerian momentum equations and pressure equation (which is derived from volume
continuity) are approximated by finite volumes with staggered scalar and momentum nodes.
The conservation of volume is calculated in a Lagrangian frame of reference. The finite
volume equations are developed in Cartesian coordinates for an orthogonal grid. The nu-
merical representation gives linear algebraic equations with explicit coefficients multiplied
times the velocity and pressure. The coefficients are built up by adding the contribution
from each part of the numerical approximation.

A. Continuity and Pressure Equation

Conservation of volume is calculated explicitly in the Lagrangian frame of reference.
After grid momentum equations are solved, which implicitly couple the particles and fluid,
grid properties are interpolated back to particle (parcel) positions and used in a final explicit
calculation of parcel velocities. Unlike most single fluid PIC methods, in the MP-PIC
method, particles move with their own velocity rather than a velocity interpolated from the
grid. Following the particle velocity calculation, the particle positions are updated. The new
volume fraction is calculated by interpolating particle volumes to the grid using Eq. (17).
The new-time fluid volume fraction is calculated from the conservation of volume relation
θ f = 1− θp.

For incompressible flow the Eulerian continuity equation reduces to conservation of
volume. A pressure field is constructed which guarantees satisfaction of the fluid con-
tinuity equation. The pressure equation is formed from combination of the fluid conti-
nuity equation and fluid momentum equation. Unlike single-phase incompressible flow,
the divergence of individual phase velocities (continuity equation) is not zero but is bal-
anced by the time rate of change of the phase volume. For an Eulerian solution of all
phases, the phases can be added to eliminate the time rate of change of volume. In the
Eulerian–Lagrangian solution, a pressure field is calculated which maintains fluid phase
continuity. The time rate of change of fluid volume, in the continuity equation, is the neg-
ative of the rate of change of the particle volume interpolated to the grid. A pressure-
correction scheme similar to SIMPLE is used to adjust the pressure and fluid veloc-
ity fields which satisfy continuity. The pressure correction method follows those for



DENSE PARTICLE FLOW MODEL 537

single phase flow, and details of pressure-correction algorithms are given by Ferziger and
Peric’ [18].

B. Momentum

The finite volume approximation to theu-momentum Eq. (2) for staggered nodeξ can
be written as

cξun+1
fξ =

∑
η

cηun+1
fη +

∑
η

aη pn+1
η +Äξ(Fx)

n+1
ξ + C′ξ , (44)

where the summations,η, are over neighbor nodes,Fx is the interphase momentum transfer,
Ä is the volume, andC′ is a constant “source.” The explicit constant coefficientsc anda are
from the numerical approximation to the momentum equation using numeric methods such
as given by Ferziger and Peric’ [18] or Andersonet al.[19]. In this study, the time derivative
is approximated by a backward difference, and the convective term is a blended central
difference and upwind approximation. For a momentum cell, the convective contribution
from the right neighbor to the constant coefficient is

cr = c′r +
{

ρ f (θ f u f )
n
r Ar if un

f r
≥ 0

0 if un
f r

< 0,
(45)

wherec′r , on the right side of Eq. (45), represents the building of a coefficient from multiple
numerical steps. The momentum cell right face flux,(θ f uf )

n
r , is the interpolated value

between the product of the velocity and volume fraction at face nodeξ and its right neighbor
value, andAr is the right area of the momentum cell. Similar terms result for the other five
faces and the center momentum node. The blend of upwind and central difference results in
a blending factor multiplying terms in Eq. (45) and an explicit central difference momentum
term added to the equation source term. The left and right pressure coefficients in Eq. (44)
are

al = Al ar = −Ar , (46)

whereAl andAr are the momentum cell left and right faces, respectively.

C. Interphase Momentum Transfer

Up to this point, a momentum equation contains adjacent cell velocities and pressures.
An implicit-coupled, interphase momentum transfer between particles and fluid contributes
to existing terms and can add new terms. The implicit interphase momentum transfer at
momentum nodeξ is

Fn+1
ξ = 1

Äξ

Np∑
κ=1

Sξκ

[
DPκ

(
un+1

f,pκ
− un+1

pκ

)− 1

ρpκ

∇ pn+1
pκ

]
npκ

mpκ
, (47)

wheremp is the mass of a particle andnp is the number of particles in a parcel. Putting the
particle velocity given by Eq. (28) into the interphase drag and putting the interphase drag
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into the fluid momentum equation, the numerical approximated momentum equation is

Äζρ f (θ f u f )
n+1
ζ

1t
+ Fn+1

cζ
= Äζρ f (θ f u f )

n
ζ

1t
−Äζ∇ pn+1

ζ +Äζρ f (θ f )ζ g

−
∑

κ

mpκ
npκ

Sζκ
Dpκ(

1+ Dpκ
1t
) ∑

ξ

Sξκ
(u f )

n+1
ξ +

∑
κ

mpκ
npκ

Sζκ(
1+ Dpκ

1t
)
ρpκ

∑
ξ

Sξκ
∇ pn+1

ξ

+
∑

κ

mpκ
npκ

Sζκ
Dpκ(

1+ Dpκ
1t
) (un

pκ
+1tg

)−∑
κ

mpκ
npκ

Sζκ
1t Dpκ(

1+ Dpκ
1t
)
ρp

∑
ξ

Sξκ

∇τξ

θn
p

, (48)

whereFc is the advective terms. The summation,κ, is over all particles. Abbreviated
subscripts are used whereζ is the momentum node, andξ is the summation of the cell grid
nodes supporting the interpolation to a particle location.

If a top-hat interpolation is used, the fluid velocity at particle positionxp is either zero
or the node velocity. If a trilinear or other interpolation is used, the fluid velocity at particle
positionxp includes the node velocities in support of the interpolation. Considering only
the fluid velocity term in the gas to particle drag Eq. (47), the interphase momentum in the
fluid equation is

Fn+1
ζ = · · · +

Np∑
κ=1

Sζκ
Dpκ

npκ
mpκ

N∑
ξ=1

Sξκ
u fξ + · · · , (49)

where the first summation is over all particles,Np, interpolating the particle momentum
to the grid. The second summation is over nodes,N, supporting the interpolation of the
fluid velocity to particle locations. In two dimensions with bilinear interpolation, the above
interphase momentum introduces the upper left and right and the bottom left and right
neighbor velocities which gives a 9-point velocity stencil. Using the interpolation product
definition Eq. (19), the velocity term in Eq. (47) reduces to

Fn+1
ζ = · · · + u fζ

Np∑
κ=1

Sζκ
Dpκ

npκ
mpκ
+ · · · , (50)

which maintains the tight support of only neighbor velocities. For a staggered grid, the
implicit interphase momentum can increase the two-dimensional pressure stencil from 5
to 12. Using the interpolation product definition, Eq. (19), no additional pressure terms
are added to the stencil. Using the definition of the interpolation operator product, double
summation terms in the momentum Eq. (48) are reduced to single summations over particles.

Equation (48) can be cast into linear algebraic equations similar to Eq. (44) with new
coefficients and constants. If the fourth term on the right side of Eq. (48) was expanded,
additional neighbor velocities would be included in the fluid equation. However, applying the
definition for multiplied interpolation operators, only the advective term,Fc, gives neighbor
velocities which have the same coefficients as in Eq. (44). The diagonal coefficient of the
fluid velocity will have an additional contribution, and the pressure coefficients will have
additional contributions. The other terms are lumped into the constant. The equations are
solved using a conjugate gradient solver [20].
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VI. TEST PROBLEMS

Four three-dimensional test problems are given. The first two problems demonstrate
the MP-PIC method for calculating particle flow where the particle normal stress is not a
significant force. The second two problems demonstrate the MP-PIC method for particle
flow at close pack where the particle normal stress is a major force. The first problem is
calculating one-dimensional settling of particles for which there is an analytical solution.
The three-dimensional calculation of one-dimensional settling of heavy particles above a
lighter fluid requires care in initial conditions. Small perturbations in the initial interface
will lead to three-dimensional Rayleigh–Taylor-type plumes. The second test problem is a
Rayleigh–Taylor problem where the interphase particle drag is high. Small perturbations in
interface volume fraction grow into large structures. The growth of the three-dimensional
buoyancy driven mixing layer is compared with measured data. The third problem is gravity
sedimentation where heavy particles settle to close pack. The last test problem is the blowing
of a jet of particles onto a plate. The problem is three-dimensional and nonlinear, with
particles close packing under the jet.

A. One-Dimensional Layered Sedimentation

The one-dimensional sedimentation of a dense particle–fluid mixture above a lighter
fluid is calculated. The problem considers gravity-driven particles falling through gas and
depositing at the bottom of the container. The three-dimensional solution requires that
there are no initial perturbations. Small perturbations quickly grow to three-dimensional
structures. The problem also requires a high level of convergence so that numerical per-
turbations do not lead to three-dimensional structures. The convergence criterion was a
maximum residual less than 10−15 on all equation sets. Eventually numerical instabilities
will lead to three-dimensional flow in this inherently unstable problem.

Andrews and O’Rourke [9] provided an analytical solution for the one-dimensional
sedimentation and only the rudimentary details are given here. A granular mixture of single
size particles occupies 20% of the upper half of the container. Table I gives details of
the problem. The interphase drag is truncated from Eq. (30) toCd = 24

Reθ
−2.65
f to allow

an analytical solution. Using a drift flux approximation, a nonlinear differential equation
results. Particles at the bottom of the expanding mixing layer, where the particle volume

TABLE I

One-Dimensional Sedimentation Calculation

Number of parcels 52,000
Particle radius 0.001 m
Particle density 1000 kg/m3

Fluid density 1 kg/m3

Fluid viscosity 0.02 kg/ms
Ps 5 Pa
θcp 0.7
Gravity −9,0,0 m/s2

Number cells 50× 5× 5
Domain 1× 0.5× 0.5 m
DStokes 90 s−1

Calculation time step 0.001 s
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fraction is near zero, fall at near the Stoke’s free-fall velocity of 0.1 m/s. At the top of the
mixture, which has a constant volume fraction, the expansion the particle volume fraction
has the characteristic solution

θ =


v−1(x/t) v(θ−∞)t ≤ x ≤ v(θ+∞)t

θ−∞ x < v(θ−∞)t

θ+∞ x > v(θ+∞)t,

(48)

where

v = g(θ f )
n

Dp
[(2+ n)θp − 1]. (49)

The upper part of the slug will remain a step function because of the crossing of character-
istics. For Stoke’s flown = 1, and for Stoke’s flow with the hindrance function,n = 3.65.

Figure 2 shows the calculated particle volume fraction at times during the transient.
Particles at positionC fall at near the Stoke’s free-fall velocity 0.1 m/s and reach the bottom
in 5 s. The numeric calculation predicts this expanding mixing layer well. At pointB, the
particle volume fraction is 0.2, and, from the characteristic, the mixture edge rises at 0.00576
m/s. The numerical solution also calculates a rise in the mixture edge atB, but the numeric
resolution is too low to provide a quantitative comparison with the analytic value. At the top
edge of the mixture,A, the particles fall at 0.0443θ f s. The calculation predicts accurately
this kinematic shock. There is also calculated, high wave number harmonics on the particle
volume fraction which are not in the analytic solution. Because of the dependence on particle
volume fraction betweenA andB, the linear solution does not apply. Calculating a one-
dimensional, heavy-above-light fluid problem using a three-dimensional solution is difficult.
Perturbations whether physical or numerical lead to instabilities. The one-dimensional test
problem shows that with care and high convergence tolerances, the solution scheme can
predict a stable solution for an unstable problem without perturbations (for a while). Note
that eventually perturbations form in the calculation. The next test problem shows that
the numerical scheme can equally well calculate an unstable problem starting from small
perturbations.

FIG. 2. One-dimensional sedimentation.
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B. Rayleigh–Taylor Problem

Rayleigh–Taylor heavy fluid, above light fluid is inherently an unstable problem. Small
perturbations grow and form into three-dimensional structures. There has been substan-
tial measured data on the growth of Rayleigh–Taylor mixing layers. Following the initial
exponential instability growth period, the growth of the mixing layer is well described by

h = αAgt2,

whereh is the half width of the mixing layer,g is gravity,t is time, and the Atwood number
is A = (ρ1− ρ2)/(ρ1+ ρ2). The value of the constantα is still undergoing scrutiny, but the
wealth of measured data suggests that the constantα lies between 0.05 to 0.07. [21–24].

The heavy fluid, above light fluid (Rayleigh–Taylor) problem is calculated using the
multiphase particle-in-cell numerical scheme. The calculation is three-dimensional and
is in a brick-shaped container. The heavy fluid is a mixture of fluid and particles. The
interphase drag is large producing the mixture fluid. The particles are a single size and
density and are uniformly, randomly distributed in the upper section of the container. No
initial perturbation is placed on the interface. Small perturbations result from the random
distribution of particles. Table II gives the calculation parameters.

Six calculations were made at four Atwood numbers. Two calculations were at the same
Atwood number and a different grid density. Two calculations were at the same Atwood
number but different levels of perturbation magnitude. Figure 3 shows the calculated develo-
ping mixing layer forA = 0.1667, looking at an angle from the bottom. Figure 4 shows a
slice in the middle of the container.

The growth rate of the mixing layer is shown in Fig. 5. The curves turn over at the end
time as the mixing layer reaches the bottom wall. All calculations fit well withh using
α = 0.07, which, in turn, compares well with the measured data.

C. Gravity-Dominated Particle Flow

A uniform, well-mixed suspension of sand particles and air are left to settle to close pack.
The calculation parameters are given in Table III. Particles are initially motionless and are

TABLE II

Rayleigh–Taylor Calculation

Particle radius 0.001 (µm) 0.001 (µm) 0.001 (µm) 0.001 (µm)
Particle density 10 (kg/m3) 5 (kg/m3) 3 (kg/m3) 11 (kg/m3)
Fluid density 1 (kg/m3) 1 (kg/m3) 1 (kg/m3) 1 (kg/m3)
Initial particle volume fraction 0.2 0.2 0.2 0.2
Particle mixture density 2.8 (kg/m3) 1.8 (kg/m3) 1.4 (kg/m3) 3 (kg/m3)
Interphase drag 105 s−1 105 s−1 105 s−1 105 s−1

x, y, zgravity 0,−9.8, 0 (m/s2) 0,−9.8, 0 (m/s2) 0,−9.8, 0 (m/s2) 0,−2, 0 (m/s2)
Numberx, y, andz cells 40× 40× 80 40× 40× 80 40× 40× 80 50× 50× 90
x-range 10 cm 10 cm 10 cm 10 cm
y-range 10 cm 10 cm 10 cm 10 cm
z-range 20 cm 20 cm 20 cm 20 cm
Atwood number 0.4737 0.2857 0.1667 0.5
Number particles 5.3×105 5.3×105 5.3×105 2×105

Calculation time step 0.002 s 0.002 s 0.002 s 0.002 s
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FIG. 4. Side view and cut through center of three-dimensionally growing plumes forA = 0.1667 att = 0.9 s.

FIG. 5. The growth rate of the mixing width.
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TABLE III

Gravity-Dominated Flow Calculation

Number of parcels 162,057
Particle radius 300µm
Particle density 2500 kg/m3

Fluid density 1.093 kg/m3

Fluid viscosity 1.95×10−5 kg/ms
Initial particle volume fraction 0.3
Ps 10 Pa
β 2
θcp 0.6
Gravity 0, 0,−9.8 m/s2

Number cells 15× 15× 40
Size of container 13.8× 13.8× 30 cm
Calculation time step 0.002 s

Note.Particles are initially uniformly randomly dis-
tributed in a container.

uniformly, randomly distributed which give initial small fluctuations in volume fraction
about the average 0.3 volume fraction, as shown in Fig. 6. The driving force is from gravity.
The particles are heavy with a constant, relatively large size, and the fluid is light, which gives
gravity-dominated flow in the 0.3-m deep container. The upper mixture interface between
suspended particles and clarified fluid is approximated well byh = gt2/2. Figure 6 shows
the particle volume fractions, and Fig. 7 shows the particle distributions at stages of filling.
The interface between clarified fluid and mixture at 0.1 and 0.15 s matches well with the
gravity-dominated flow values of 0.25 and 0.19 m from the bottom, respectively. The MP-
PIC solution, with the particle normal stress model presented in this text, gives a natural
settling to close pack. Figure 6 shows that at 0.2 s the entire particle mixture is close pack,
and at 8 s nofurther settling beyond close pack has occurred.

FIG. 6. Volume fraction at times during gravity-dominated sedimentation.
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FIG. 7. Particle distribution at times during gravity-dominated sedimentation. Particles are colored based on
local particle volume fraction.

D. A Three-Dimensional Jet of Particles

In the first two test problems, the particle normal stress is not a big player. The robust
solution method for a dynamic problem where particles are jammed to close pack is demons-
trated in the jet test problem. A jet of particles from a 1.5-cm tube is directed onto a flat
plate at high velocity. The inlet blowtube pressure boundary is 10 kPa, and the boundary
conditions at the periphery of the calculation domain except for the bottom flat plate are
0 kPa. The gas velocity in the blowtube is on the order of 25 m/s. Particles are fed at a
particle volume fraction of 0.3. Details of the calculation are given in Table IV.

Figure 8 shows particles impacting the plate. The particles hit the plate and spread cir-
cularly from the point of impact. As the vertically traveling particles slow and turn out
horizontally, the particles pack to near close pack under the jet. The color of particles
corresponds to the particle volume fraction. Black is near close pack, and Fig. 8 shows
the dark core of close pack particles under the jet. Figure 9 shows the time history of the
volume fraction at the wall under the jet. The particle volume fraction quickly approaches
close pack and then stays slightly below the close pack value. There is a small high frequency

TABLE IV

Particle Jet Calculation

Number of parcels (att = 0.8s) 70,797
Particle radius 74 to 180µm
Particle density 2760 kg/m3

Fluid density 1 kg/m3

Fluid viscosity 0.02 kg/ms
Ps 100 Pa
β 3
θcp 0.5
Gravity 0, 0,−9.8 m/s2

Number cells 24× 24× 14
Domain 27× 27× 17 cm
Blow tube diameter 1.5 cm
Particle feed particle volume fraction 0.3
Feed pressure 10 kPa
Boundary pressure 0 kPa
Calculation time step 0.00005 s

Note.Particle sizes fed in a Gaussian distribution about the mean radius.



546 D. M. SNIDER

FIG. 8. Particle jet impacting a flat plate. Particle color is based on local volume fraction.

fluctuation riding on the particle volume fraction. The ability to calculate close pack in
this highly dynamic problem of particles jamming onto a wall illustrates the robustness of
the calculation method. The presented model and its associated algorithm for the particle
normal stress force provides excellent performance.
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FIG. 9. The particle volume fraction at the wall under the jet.

VII. CONCLUDING REMARKS

The MP-PIC Eulerian–Lagrangian numerical scheme for particle flow has been extended
to three dimensions. While not discussed in this paper, the three-dimensional solution
addresses the problem of gridless particle flow in intricate geometries specified by CAD
drawings. The numerical scheme has been applied and can solve a wide variety of problems
in complex geometries.

This paper defines and formalizes interpolation operators and their properties which
provide compact support, are both locally and globally conservative, and are suitable for
three-dimensional calculations. These operators are essential to robust and fast solution
methods.

A subgrid model was presented for modeling the particle normal stress applied to discrete
particles. The algorithm implementing the model is fast and robust. Using the new particle
normal stress model eliminates implicit solutions or fractional time step methods previously
required by the highly nonlinear, particle normal stress. The calculated results show excellent
performance from the model.

APPENDIX A

The interpolation operator defined above with the property given by Eq. (19) is conser-
vative. This is shown by mapping the particle propertymp to grid nodeζ, which gives the
grid particle property

Mpζ =
Np∑

κ=1

Sζ

(
xpκ

)
mpκ

, (a1)

where the total number of particles isNp.
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The grid property,Mpζ , mapped back to particle positionxpκ is

mpκ
=

N∑
ξ=1

Sξ

(
xpκ

)
Mpξ , (a2)

where N is the number of nodes, which includes all nodes supporting the interpolation
operators.

Putting (a1) into (a2) and reordering the summations gives

mpκ
=

Np∑
κ=1

mpκ

N∑
ξ=1

Sζ

(
xpκ

)
Sξ

(
xpκ

)
. (a3)

Using the definition of the product of interpolation operators, Eq. (19),

mpκ
= mpκ

N∑
ξ=1

Sξ

(
xpκ

)
, (a4)

and because
∑N

ξ=1 Sξ (xpκ
) = 1, the particle property,mpκ

, for the particle atxpκ
is recovered.

The mapping of the particle property to the grid and the subsequent mapping of the property
to a particle is conservative.

Now examine the mapping of a grid property to particles and the remapping of particle
properties back to the grid. Start with the mapping of grid property,Mpζ

, to particle positions
xpκ

for all particles as given by (a2). The particle property is interpolated back to the grid
using (a1). Putting (a2) into (a1) gives

9pζ =
Np∑

κ=1

N∑
ξ=1

Sζ

(
xpκ

)
Sξ

(
xpκ

)
Mpξ . (a5)

The product of the interpolation operators is defined by Eq. (19). Only one combination of
the products is not zero, and the summation over nodes reduces to a single value.

9pζ =
Np∑

κ=1

Sζ

(
xpκ

)
Mpζ . (a6)

The grid property,Mpζ , does not depend on particle position and can be removed from the
summation, giving

9pζ = Mpζ

Np∑
κ=1

Sζ

(
xpκ

)
. (a7)

The portion of the grid propertyMpζ , originally mapped to a particle positions, is mapped
back from particles to grid nodeζ . The process is conservative.
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